Drive Modernization Part VII PowerFlex 4 to PowerFlex 523

| Scott Savage

PowerFlex 4 to PowerFlex 523

Welcome to the seventh part of the drive modernization series touching on Allen-Bradley® PowerFlex® drives, provided by Horizon Solutions. This series has provided many modernization solutions for legacy and mature drive to help assist you with the conversion. This installment covers migrating from PowerFlex 4 to PowerFlex 523. 

Other blogs in this series include the following:

The Powerflex 4 series is superseded by the Powerflex 523 series, these drives are considered V/hz drives with a mode called “sensorless vector.” Basically, sensorless vector control (SVC) has an autoboosting algorithm to dynamically push more amps to the motor, when the drive load slows down, the motor and will maintain a commanded speed. These component style drives are speed regulators.

Getting Started with the Basics

For migrating PowerFlex 4 to PowerFlex 523, let’s start with some basics on what we need to accomplish to do a quick and easy installation. The most important task you can do is to back up the program using a program called Connected Components Workbench™ (CCW). It is a free download on the Rockwell Automation® website. A couple of methods can be used to access the drive with the software. You can go to each individual drive via “sneakernet” (plug into each drive individually with a cable) or via the network you may have in your location.

The PowerFlex 523 only has a DSI port (Modbus RTU serial) the drives can be daisy-chained together with wire and a resistor on each end of the physical network (terminators). You can access the network via a 1203-USB cable through one of the drive DSI ports ( coded red). This drive does not have an ethernet port unless you have an add-on card called a 25-COMM-E2P dual-port card added in the accessory port on the drive.

The download for CCW can be found on the Compatibility & Downloads offering on the Rockwell Automation website. It is strongly advised to download this software and retrieve your drive parameter sets long before the existing drive fails. Before you can migrate from PowerFlex 4 to PowerFlex 523, you need to know the parameters in the old PowerFlex 4 drive to correlate to the new parameter set in the PowerFlex 523 drive. You cannot retrieve them once the old drive has failed, making the transition extremely arduous. The time saved will lead you on your way to a fast and professional approach when the time is at hand!

PowerFlex 4 to PowerFlex 523
 
The Rockwell Automation website has the Compatibility & Downloads feature, search for CCW acronym or “Connected Components Workbench.”

This software will be used in coordination with RSLinx® Classic communication software to talk to the drive. The communication software has all the drivers in the library to talk to the drive. RSLinx software comes with the CCW download package, so if you don’t have it, you will have RSLinx software when CCW is installed.

The 1203-USB cable can be purchased through Horizon Solutions to connect to the PowerFlex 523 drive. Under the communications pull-down menu, you will choose RS-232 driver for configuration. The boxes must be filled in properly after the driver configuration window appears. Please fill in the details to get the driver to operate properly. 

Here is the configuration, the example is for com port 7 on the laptop, yours may be different, so please check under windows Device Manager in serial com ports to see which port is assigned to the 1203-USB device, the icon will be a six-sided A-B “meatball,” as we call it, if the cable is recognized by the Windows operating system. The configuration box is shown below:

PowerFlex 4 to PowerFlex 523 Configure RS-232
 
Finding the Parameters

If you choose to use the software, it is a great tool for using offline and using the filter in the software to find parameters by name or by number instead of using the user manual and the time-consuming hunt and peck approach. If you don’t have a laptop, please load it on an engineering desktop and write down or print the parameters of interest as an offline tool. The software loads the parameters and default values, so you can make some decisions on install. These drives do not have a copycat function in the integral keypad. Once again, please backup your programs prior to a failure.

PowerFlex 4 to PowerFlex 523 Parameters
 
The filter in CCW is shown above, the changed parameters are coded yellow in the show all screen. Parameter 34, 36, and 493 were changed in the drive with the software.

PowerFlex 4 to PowerFlex 523 Parameters
 
Shown above is the show non-defaults screen, observe the print icon to print the files to Adobe Acrobat format. Hit Show All to go back to the screen which shows all parameters.

If you have a remote human interface module (HIM), you can backup your programs using HIM copycat with these two devices:

  • 22-HIM-A3 NEMA 1 Keypad (HIM) with 22-HIM-B1 BEZEL
  • 22-HIM-C2S NEMA 4/12 Keypad (HIM)

Proper Grounding for PowerFlex 523 Drives

Three Major Electrical Distribution Systems

Solidly Grounded Distribution System

PowerFlex 4 to PowerFlex 523 Delta/Wye
 
Both PE-A(MOV) and PE-B (common mode output filter) are installed.

PowerFlex 4 to PowerFlex 523 High-Resistance Ground

Both PE-A(MOV) and PE-B (common mode output filter) are removed.

Ungrounded Delta

PowerFlex 4 to PowerFlex 523 Ungrounded Delta
 
Both PE-A(MOV) and PE-B (common mode output filter) are removed.

Know your distribution system prior to installation of the drive. If the transformer is not solidly grounded (resistive or delta secondary), you must remove the jumper for the MOVs. Failure to remove the jumper will cause damage to the MOVs and the drive will fail. These drives are not repairable after damage. It is also mandatory to place a line reactor in front of the drive on all delta systems. Failure to install a line reactor may cause high current flow upon a distribution fault, and if the system has one ground fault, it could result in severe damage between the two ground paths in your facility. The PowerFlex 523 drive does not have PE-B (common mode filter in PowerFlex750 drive), only the MOV jumper. Below illustrates the location of this jumper.

PowerFlex 4 to PowerFlex 523 Jumper Location
 
Please keep in mind, a resistive grounding scheme also allows the first ground fault to occur. Though not mandatory, please keep in mind, a line reactor in front of these drives is strongly recommended. If the KVA is 10X KVA value of the HP of the drive, then a line reactor becomes mandatory (i.e., a 100KVA transformer supplying a 10 HP requires a line reactor). The PowerFlex 525 drive does not have an internal DC link inductor till frame size E. There is no DC link inductor on the DC bus till frame E. It is strongly recommended to place a line reactor in front of the drive regardless of the transformer size upstream of the drive.

Grounding of the Motor

The motor needs a solid bond from the drive to the motor. The ground wire or multiple ground wires needs to go directly from one of the two green ground screws on the drive chassis to the conduit box on the motor. Do not place the ground from the motor to a common ground bus in the drive cabinet or the common ground bus in a motor control center (MCC), this injects noise that seeks noise generated from the drive output to other areas in your facility. This is a physical requirement for a successful drive installation. In addition, variable frequency drive (VFD) shielded cable should be on the output side of the drive to cancel noise, which could be contained to the output wires or airborne in the output cable. 

Please avoid THHN, if possible. Thermoset insulation “cold sets” and is also susceptible to moisture. XHHN wire is preferred, and shielding using VFD cable is extremely important to a successful commissioning of the drive. Inspect all wires down at the motor end of the drive for corona damage (pitting) and replace, if needed. 

To ensure a good bond at the motor, remove all paint on the motor junction box, all currents need to cancel to zero, including noise, and drives should be considered “noise generators.” The ground wire from the motor goes directly back to the green drive ground screws on the chassis of the drive. Good practices lead to fewer problems later when the drive is operating. Please do not assume that because the drive operated properly before it will continue to operate in the same manner. Once again, the grounding path is a physical practice and must be followed specifically upon installation.

How to Properly Ground the Drive and Motor

PowerFlex 4 to PowerFlex 523 Ground the Drive and Motor

Please note, the PE connections from the motor frame to drive PE screw are grounded at both ends. This holds true for all distribution systems unlike the jumpers discussed above.

If you are using a VFD cable with proper shielding and braiding to help capture the noise on the output of the drive, make sure all shields and braids are terminated on both ends of the cable—the drive chassis and motor chassis. All bare bonding wires, which could be multiples depending on the style of cable, must all be bonded uninterrupted to the drive, not to a common ground bus. The other end of the shielded cable must also be terminated to the frame of the motor. Please use low impedance terminals or lugs and remove any paint on the motor conduit box for a low impedance connection. Since this drive has no output filter, provide the best path to the drive from the motor. 

If you have an MCC, the drive grounds (bonds) do not terminate on the MCC ground bus. They need to go directly to the drive the noise was generated from. Keep in mind, noise can be airborne and the foil shields (usually two shields for 100% coverage need to get back to the drive to cancel out all currents from the drive itself). If you do not have VFD shielded cable, the single ground will act as the best return path to the drive. 

Noise degrades all kinds of electronic equipment. Sometimes the damage is months down the road. Improper grounding will result in premature failure of all low impedance paths where the noise will travel to go back to where it was generated from (the drive), even internal drive components. Your most important wire is your ground and how physically it is connected. A drive can be wired to code and still be bonded improperly.

Wiring The I/O on a PowerFlex 523 Drive 

PowerFlex 4 to PowerFlex 523 Wiring the I/O

Wiring the I/O on a PowerFlex 4 Drive 

PowerFlex 4 to PowerFlex 523 Wiring Installation

Two-Wire Control

Quickly, let’s review two-wire control concepts, Allen-Bradley traditionally uses the term “Run” for a two-wire control term. Run Forward and Run Reverse are used for two-wire control.

PowerFlex 4 to PowerFlex 523 Two Wire Run
 
Three-Wire Control

Three-wire control uses a momentary switch versus the two-wire control. Some applications and environments require three-wire control. Either method works—it becomes a matter of preference to which control method you choose to standardize on.

PowerFlex 4 to PowerFlex 523 Three Wire Start Stop

Please note, terminals 19 and 20 are not the correct terminal numbers for the PowerFlex 523 drive. This is for concept only, showing the electrical symbols for momentary and maintained switches. Three-wire and two-wire electrical symbols and their nomenclature of “Start Stop” and “Run” are important to observe. These terms and symbols can’t be mixed together, rather you have momentary or maintained devices.

If you have three-wire control, terminal two will have a momentary pushbutton instead of a maintained switch. If you have two-wire control, the jumper should remain between terminals 1-11 on PowerFlex 523 drives. This jumper determines two-wire control or three-wire control, leaving the jumper is the proper installation for two-wire control. If you are hardwired to a PLC, and wired to a relay output, two-wire control is very common.

Note on the PowerFlex 4 drive, you have an SRC/SNK switch, observe its position, most common is SRC to supply I/O positive voltage to the terminals shown above in the PowerFlex 4 drive example. The sourcing or sinking in the PowerFlex 523 drive is determined by wiring to the example shown in the PowerFlex 523 drive I/O wiring and wiring to either negative switching (SNK) or positive switching (SRC) and setting J5 to the proper mode shown above. The default is set to SRC mode, it is a safer mode in case the supply wire goes to ground.

Example of Two-Wire Control for PowerFlex 523 Drives

PowerFlex 4 to PowerFlex 523 Two Wire SRC Control Run

PowerFlex 4 to PowerFlex 523 Two Wire SRC Control Non-Reversing
  
Example of Three-Wire Control for PowerFlex 523 Drives

PowerFlex 4 to PowerFlex 523 Three Wire SNK Control Non-Reversing

PowerFlex 4 to PowerFlex 523 Three Wire SRC Control Reversing
 
Analog Inputs PowerFlex 4 Drives

PowerFlex 4 to PowerFlex 523 Analog Inputs
 
Analog Inputs PowerFlex 523 Drives

PowerFlex 4 to PowerFlex 523 Analog Inputs

PowerFlex 4 to PowerFlex 523 Analog Inputs
 
Analog Input Potentiometer PowerFlex 4 Drives

PowerFlex 4 to PowerFlex 523 Potentiometer
 
Analog Input Potentiometer PowerFlex 523 Drives

PowerFlex 4 to PowerFlex 523 Potentiometer
 
Potentiometer terminals are identical from PowerFlex 4 to PowerFlex 523. A 10K potentiometer gives you a full range from 0-60hz. Other resistance values on the potentiometer must be scaled to achieve full range of speed (i.e., a 5K potentiometer you would have to adjust the maximum frequency on the drive to 12 0hz to achieve 60 Hz. output on the drive).

4-20mA and 0-10VDC Analog Output PowerFlex 4 Drives

There are no analog outputs on this, please consider the PowerFlex 525 drive.

Relay Output PowerFlex 4 Drive

PowerFlex 4 to PowerFlex 523 Relay Output

PowerFlex 4 to PowerFlex 523 Relay Parameters
 
In this example, the relay for the PowerFlex 4 drive is set to motor running; this is commonly used in a lot of applications. This parameter needs to be examined to see what the relay function is in the PowerFlex 4 drive and programmed in the relay for the PowerFlex 523 drive.

Relay Outputs PowerFlex 523 Drive

PowerFlex 4 to PowerFlex 523 Relay Output

PowerFlex 4 to PowerFlex 523 Relay Outputs Parameters
 
The value of parameter 55 in the PowerFlex 4 drive needs to be programmed in parameter 76 in the PowerFlex 523 drive.

Parameters of Interest PowerFlex 523

PowerFlex 4 to PowerFlex 523 Parameters
 
Now we are ready to program the drive, please keep in mind using CCW and uploading the parameters in all your older PowerFlex 4 drives saves a lot of time and energy. Please back your parameters off all your existing drives to make the project easy.

Use the parameters in the PowerFlex 4 drive to set your parameter values in the PowerFlex 523 drive if possible, nomenclature is the same. If you do not have the parameter set, then you must program and make the decisions to make sure the parameters set is correct so the drive operates correctly.

  1. Step one, enter the motor data if you are using SVC (sensorless vector control).
  2. Leave parameter 39 at SVC, which is the default.
  3. Set acceleration time in seconds. If stop mode parameter 45 is at “ramp CF,” please adjust your deceleration time. Coast has no deceleration time. 
  4. If you run in V/hz mode instead of SVC, you only have to enter the motor FLA and motor OL Current (5% higher than FLA with 1.15 service factor). You do not have to autotune the drive in V/hz mode.
  5. SVC or FVC (flux vector) drive needs to be autotuned to achieve torque at the motor shaft.
  6. Set your start source (only from 1 location) parameter 46.

PowerFlex 4 to PowerFlex 523 parameters 46

     7. Set your speed reference (only from one source) parameter 47.

Program Analog I/O

Analog Outputs

Parameter 88 and 89: Set Your Analog Out

PowerFlex 4 to PowerFlex 523 Analog Out Parameters
 
Analog Inputs

Parameter 91-98: Set Your Analog Input Values and Scaling

PowerFlex 4 to PowerFlex 523 Analog Input

Relay Outputs PowerFlex 523 Drive

Parameter 76-80: Set Your Analog Input Values and Scaling

PowerFlex 4 to PowerFlex 523 Relay Outputs

The PowerFlex 523 drive only has Relay 1, for two relays please consider the PowerFlex 525.

Ethernet Communication (with 20-COMM-E2P)

Remove Control Module Off Drive

PowerFlex 4 to PowerFlex 523 Remove Control Module Off Drive

Place Connector for Adapter in Drive

PowerFlex 4 to PowerFlex 523 Place Connector for Adapter in Drive
 
Insert Ethernet Adapter

PowerFlex 4 to PowerFlex 523 Insert Ethernet Adapter
 
Ethernet Differences 

There are a few differences with ethernet when migrating from PowerFlex 4 to PowerFlex 523 drives. The PowerFlex 4 drive has a 22-COMM-E adapter under the cover of the drive. It is connected via a ribbon cable and plugs into the drive. The PowerFlex 523 drive has an add-on module (25-COMM-E2P) dual-port adapter. PowerFlex 523 drives now have direct access to parameters inside the drive for communication (e.g., IP address, subnet masking, and gateway configuration if used outside the facility with gateway). 

NOTE: The IP address on your LAN adapter in the computer must be set for the same subnet as the drives you wish to communicate with.

The three basic ways to communicate between the PLC controller/laptop to the PowerFlex 523 drive:

  1. Use a static IP address in drive on the same subnet (e.g., laptop is 192.168.1.10 and the drive has an address of 192.168.1.20).
  2. Use DHCP and the switch will serve you a random IP address to communicate with the laptop/PLC.
  3. Use a router and talk between different subnets.

You can assign the static IP address a couple of different ways:

  1. Use the keypad (HIM) and program each individual IP octet into the different parameters. Also, program the subnet masking to determine your class of IP address. For the examples shown below, we will use class C addressing. The first, second, and third octet determines network ID, the fourth octet is the host ID count on the network. Class C subnet masking can provide up to 254 devices on the network each “0” in the subnet mask permits more Host IDs for more device addresses. 
  2. BOOTP Server software can provide IP addresses via a network. This software comes with Studio 5000® or RSLogix5000® install package.
  3. Use CCW software and program parameters shown below.

This example would be the basics to assign you IP address to the drive. We will use Class C subnet on network 192.168.1.x x=host ID (device):

  • Drive IP Address: 192.168.1.20
  • Drive Subnet Masking: 255.255.255.0
  • Subnet Mask in Binary: 1111.1111.1111.0000

CCW Parameter View with Numeric Values

PowerFlex 4 to PowerFlex 523 CCW Parameters

NOTE: Parameter 4 in the 20-COMM-E2P (PORT 2) when parameters 6-12 are changed must be set to “parameters” not “BOOTP.” Cycle power to make sure BOOTP is disabled. If programmed correctly, the adapter will hold the IP addresses and proper subnet masking values.

To connect to the drive, make sure your static IP address on your computer adapter is set for an IP address that is on the network ID (192.168.1), please keep in mind this is class C subnet addressing. The laptop should be a unique host ID. Let’s choose 192.168.1.20, and it now is assigned to the LAN adapter on the Windows® workstation. Assign the LAN adapter on the computer through Windows Control Panel, System, Device Manager, or equivalent depending on the Windows operating system.

Once drive power is cycled, use a software package that was installed with CCW software called RSLinx from Rockwell Automation. There is an icon called RSWho symbol looks like this:

PowerFlex 4 to PowerFlex 523 AB_ETHIP-2, Ethernet
 
It allows you to browse the network and query all the nodes on your subnet. There are two types of ethernet drivers in the RSLinx library that are available for your use. Please use the ETHIP driver and not the ETH generic driver, which needs the nodes scheduled in the driver scanning list. Ethernet/IP will auto browse and discover all devices on the network using the Ethernet/IP protocol.

You will need to load the ethernet driver in RSLinx. To do this, go to the pulldown menu at the top of the software window “Communications.”

PowerFlex 4 to PowerFlex 523 Communications
 
Choose “Configure Drivers.” Now, use the pulldown menu for “Available Driver Types” to select a driver.

PowerFlex 4 to PowerFlex 523 Configure Drivers
 
Choose an ETHIP driver. You can give the ETHIP driver a specific tag name or leave the driver name at the default. In this case, we have left it at the default for identification purposes.

Now, you should be able to invoke an RSWho and query all devices on the network. Leave the Configure Drivers screen and click on the ETHIP driver on “+” and see what populates similar to what is shown below:

PowerFlex 4 to PowerFlex 523 AB_ETHIP-2, Ethernet

The screen should expand showing devices on the network shown above, this is strictly an example of the communications software.

Now that communication to the drive has been established with RSLinx software, you can proceed to going online with the laptop using CCW and view many parameters in the drive. You can also trend parameters such as amps, frequency, DC bus Volts, etc.

Connected Components Workbench

PowerFlex 4 to PowerFlex 523 Connected Components Workbench Communications
 
The communications look identical to your RSLinx software experience in CCW. Click on the communications pulldown text (highlighted), and you will see the identical screens that were available in RSLinx. Each device in the network will tie to their IP addresses once you choose the driver in RSLinx. The example we have chosen is ETHIP shown below:

PowerFlex 4 to PowerFlex 523 CCW Configure Drivers
 
Please keep in mind, you can use other drivers such as the serial driver for the 1203-USB through RSLinx. Since the RS-232 driver is at 115,200 Kbits/sec, it is not recommended for trending data from the drive.

Have fun experiencing CCW. If you have not used it before, it is a powerful software tool when programming the drive. The filter in the parameters window helps search for parameters by name or by number, allowing fast access to the parameters you need to change to get your drive running fast.

Please remember to back up your parameter files in CCW, so when the day comes you need to quickly download the program into a new drive, you will be ready!

Thank you for reading this blog about migrating from PowerFlex 4 to PowerFlex 523 drives; I hope it gave some insight into the two drives so you can modernize your plant when necessary! Feel free to contact your Power Specialist at Horizon Solutions with any questions you may have.

Literature of Interest for Our Readers

The Literature Library on the Rockwell Automation website has technical documents for the PowerFlex 523 drive and the PowerFlex 520 series family. 

https://www.rockwellautomation.com/en-us.html

Documents of interest:

  • 520-UM001 User manual
  • 520-TD001 Technical Data
  • 25-UM003 20-COMM-E2P Ethernet Adapter user manual